DATE: August 30, 2017
TIME: 10:00am PT, 1:00pm ET
Recent studies show that cancer cells can resist treatment by changing into a different cell type. Many treatments for specific cancers, such as breast, prostate, or lung, target vital pathways active in healthy tissue. The reliance of cancer cells on these pathways suggest that they retain properties of healthy cells. A prominent example of targeted treatment is androgen deprivation therapy for advanced prostate cancer. This therapy limits the production and effectiveness of androgen hormones because prostate cancer cells depend on androgen hormones, just like their healthy counterparts. Prostate cancers that become resistant to multiple rounds of therapy often no longer express the target of therapy. These resistant or ‘reprogrammed’ tumor cells are more likely to express different cell lineage markers. These markers are expressed by neuroendocrine cells, a rare cell type in healthy and untreated cancerous prostate tissue. Once prostate cancer cells are reprogrammed, current therapies are ineffective and patients quickly succumb to their disease. Our laboratory studies reprogramming in prostate cancer cells with the aim of developing new drugs to treat these resistant patients. We use murine models and 3D organoid culture of murine and human tumors to understand how prostate cancer cells acquire the ability to reprogram and become resistant. Organoid culture is a valuable tool in our research because it allows the formation of structures that include multiple cell types. In the future, we will use organoids of aggressive prostate cancer in screens of drug candidates and assess drug effectiveness in weeks, rather than the months or years required for classic in vivo studies.
Learning Objectives: