Scientists from the Moscow State University (MSU) in collaboration with colleagues from Germany have found that a derivative of [3]-radialene, can be used to create organic semiconductors. Publishing in Advanced Materials, Dmitry Ivanov, the Head of the Laboratory of Materials Engineering at the Department of Fundamental Physics and Chemical Engineering at MSU, believes that the achievement will greatly contribute to the development of organic electronics and, in particular, to fabrication of organic light emitting diodes and new classes of organic solar cells.
“Together with our Dresden colleagues we decided to design a completely new type of low molecular weight dopant for the organic semiconductor,” said Dmitry Ivanov. “And here it was important to choose a molecule that it was not only suitable in its energy levels, but, importantly, the dopant must be well mixed with the polymer, so that in contact with the polymer it does not segregate in a separate phase, eventually crystallizing and, in fact, losing contact with the polymer.”
This dopant, the derivative of [3]-radialene, is a small planar molecule that has a triangular structure from its carbon atoms. [3]-radialene was selected because it has the most suitable LUMO level, or the lowest unoccupied molecular orbital. Meaning that it can help to easily extract electrons from the semiconducting polymer matrix, thus becoming free charges and consequently increasing the conductivity of the doped material.
The researchers confirmed experimentally that this substance boosted the electrical conductivity of the polymer tremendously. “This could pave the way to fabrication of new organic solar cells with improved characteristics. We also think about production of organic field-effect transistors. I think it will give a significant boost to the development of organic electronic devices,” concluded Ivanov.
Sources: AAAS/Eurekalert! via Moscow State University, Advanced Materials