How methylation influences RNA activity is not well understood. There are several types of methylation, this study focuses on the kind that is known as m6A or N6-methyladenosine. A range of functions results from this processing, for example, the length of time the RNA remains in the cell before degradation, or the amount of protein it will make. The m6A modification is, importantly, the most abundant methylation type on RNAs that produce protein.
Knowing what percentage of RNA has the m6A modification provides information that may help detect disease, said Xing, because diseased and healthy cells could have varying m6A levels. Researchers can also use information about RNA m6A levels to help answer questions about stem cell differentiation, something of particular interest to scientists investigating regenerative medicine. Another possibility for the application of this work is helping researchers maintain stem cells in culture. They have a tendency to spontaneously differentiate, hindering research due to the loss of control of cell fate. A team led by Xing and Cosmas Giallourakis has shown previously that blocking m6A stops pluripotent stem cells from differentiating, keeping them in a suspended state while remaining healthy.
"We are very excited about the promising data and the new tool that is now available to study m6A in a wide range of cell types including pluripotent stem cells," Xing said. "We anticipate that our research will improve the understanding and use of pluripotent stem cells in regenerative medicine."
Sources: Phys.org via UCLA, Nature Methods, Cell Stem Cell