"One of the broader goals of our research is to make regenerative treatments more accessible and clinically relevant by developing easy, efficient and cost-effective ways to engineer human cells and tissues," explained the senior author of the study, Shyni Varghese, a Bioengineering Professor at UC San Diego.
Getting stem cells to become specific tissues, or differentiate, has not been an easy problem to solve. The process is laborious, expensive, and not efficient. Additionally, teratomas can form. Teratomas are runaway stem cells; they exhibit out of control differentiation and can cause tumors that contain a variety of different tissue types.
The team led by Varghese showed that human pluripotent stem cell differentiation into bone cells could be controlled by the addition of adenosine, a molecule that occurs naturally in the body. Beyond that, the bone cells the team generated went on to build bone tissue that contained blood vessels. Those tissues were subsequently transplanted into mice where they formed new tissue without teratomas.
The team has previously published work on the influence of calcium phosphate minerals on the mechanism of stem cell differentiation into osteoblasts. They determined that calcium phosphate is taken up by stem cells to produce ATP, which breaks down adenosine, the signal for stem cells to become osteoblasts.
"We wondered what would happen if we bypassed the steps and just supplemented the medium with adenosine. That's what inspired this current study," Varghese concluded. The investigators are currently working to understand how adenosine promotes the formation of bone.
Sources: AAAS/Eurekalert! via UCSD, Science Advances