The novel design of the DNA probe provides better than ever accuracy. One strand of the double helix is attached to the graphene field effect transistor. This “normal” strand is complementary to a specific strand of DNA containing a single nucleotide polymorphism (SNP), a common genetic mutation. The other strand of the double helix has four defective nucleotide bases – guanines that were replaced with inosines so the strand would bind to the normal strand, but not as strongly as a truly complementary strand would bind.
In theory, once the biosensor chip is inserted into the body, if it were to come into contact with the truly complementary strand to the normal strand of the DNA probe the defective strand would be replaced with the complementary strain from the body. At this point, the sensor is designed to produce an electrical signal that the researchers intend to be transmitted wirelessly to a mobile device.
The future of this technology is as vast as scientists’ understanding of the genetic mutations that cause certain diseases. If they know the SNP that causes a certain autoimmune disease, they can create the complementary strand and attach it to a biosensor chip to be sent into a patient suspected to have the disease or has a family history of the disease. The researchers from the study, published in Proceedings of the National Academy of Sciences, anticipate the biosensor chip to be useful for “blood-based tests for early cancer screening, monitoring disease biomarkers, and real-time detection of viral and microbial sequences.”
Compared to current and past SNP-detection technology, the new biosensor chip is expected to be faster, more accurate, and less expensive. Simply because the design incorporates double-stranded DNA as opposed to single-stranded DNA, this novel technology ensures that only the perfect match will cause a test to read positive because of the need for the complementary strand found in the body to not only bind to the DNA probe but also to displace the defective complementary strand on the probe.
The DNA probe can also detect SNPs as long as 47 nucleotides, a length greater than any previous SNP-detecting technologies were capable of detecting. Researchers say that this biosensor chip is in the “proof-of-concept” stage still, but once it has been tested in clinical studies, scientists can expect the chip to jump-start a “new generation of diagnostic methods.”
Sources: University of California San Diego