Hard-shelled spores can survive for years without food so in forming one, an organism must devote all of its energy into sporulation. The timing must be perfect. If a microbe commits to become a spore too soon it may die from competition with healthy neighbors that continue multiplying. Delaying the decision too long could cause death by starvation before the spore formation is complete.
The new study, published in Molecular Systems Biology, builds upon their previous work. Igoshin and collaborators made a computer model to show that a decline of cellular growth can trigger sporulation decisions in B. subtilis.
B. subtilis excels at surviving and is commonly found in soil. It’s not harmful to people, even being used as a probiotic in some foods. It’s also the model organism of choice for biologists who study sporulation.
“Sporulation by some of the close relatives of B. subtilis is a big hassle for the food-preservation industry because many of those spores can survive boiling temperatures,” Igoshin said. “To kill those spores, you need to apply both heat and high pressure. So people have been looking for other methods to inhibit sporulation. If sporulation was triggered by a specific molecule, then perhaps a drug could be found to block that molecule, but our research suggests that sporulation is a general physiological response and that food safety engineers will need to look for other methods of control.
“Moreover, there is a good chance that this mechanism controls key decisions in other bacterial species,” he said. “It ties to very basic bacterial physiology, and as a result, I think it may be universal.”
Igoshin started studying the genes that regulate sporulation in B. subtilis a decade ago. You can see more about their work in the video.
Sources: Rice University News & Media, Molecular Systems Biology