Mircea Podar of ORNL's Biosciences Division was the leader of a team that isolated a microbe called Nanopusillus acidilobi, from Cistern Spring. N. acidilobi is an archaeon – a single-celled microbe without a nuclear membrane or organelles that occupies its own branch (or domain) on the tree of life. The team was, incredibly, able to culture these small microbes that are only 100 to 300 billionths of a meter in size. Now, interactions with their host, another archaeon called Acidilobus, can be analyzed and studied.
The methods the team used and the symbiotic archaeon system were detailed in a study published in Nature Communications, which can now serve as an important guide for the study of evolution and mechanisms of more complex systems.
"This work demonstrates how organisms find ways to adapt and interact with specific organisms in a symbiotic or parasitic way to survive in hostile environments," Podar explains. "By integrating knowledge from genomics, proteomics and classical microbiology, we can culture wild organisms and sometimes manipulate them for practical applications that range from energy production to medicine."
This study was the pinnacle of work that has been ongoing for many years. This particular microbe is especially challenging to work with because it favors boiling hot, acidic springs as a home. "We discovered and cultured a novel organism from a group of organisms that people have been trying to get for over a decade, and in part that was due to prior genomic data we acquired from those organisms in Yellowstone," Podar said, adding that the microbial relationship "abounds in unique, remarkable physiological and genomic features."
Sources: AAAS/Eurekalert! via Oak Ridge National Laboratory, National Park Service, Nature Communications