When chemicals that are fighting an immune infection trigger inflammatory responses throughout the body, called sepsis, multiple organs systems can be damaged and then fail. Progressing further into septic shock, blood pressure drops dramatically and death can result. Sepsis is the leading cause of death for newborns and children worldwide, and kills a quarter million people each year in the U.S. There is not any good treatment for it, like antibiotic-resistant infections.
Recent work has shown that a bacterial invasion triggers the activation of protein complexes called inflammasomes. That then starts a process called pyroptosis; infected cells explode, thus releasing bacteria along with chemical signals act as an immune alarm. But a balance must be maintained; if the response is too strong sepsis can occur, causing organ damage that can be fatal.
Researchers know that activated inflammasomes turn on enzymes called caspases that cleave a molecule called gasdermin D. This cut releases the active fragment of gasdermin D's active fragment, called gasdermin-D-NT. But what was unknown was how that causes pyroptosis.
Lieberman, Wu and their team now demonstrate that gasdermin-D-NT works in two ways. It penetrates the membranes of the infectious bacteria and kills them. It also perforates the membrane of the host cell, causing pyroptosis; the cell is then killed, releasing bacteria and sounding the immune alarm. They also learned that uninfected cells nearby remain unscathed.
Interestingly, the team also discovered that gasdermin-D-NT kills bacteria outside of cells directly, including Listeria, E. coli, S. aureusa. In the lab it happened within only five minutes.
These results must be replicated in animal models of infection and sepsis, but Lieberman thinks that gasdermin-D-NT works could have the potential to be harnessed for treating deadly bacterial infections.
"Because of widespread antibiotic resistance, we have to think about other strategies," says Lieberman. "Since the fragment kills bacteria but not uninfected host cells, one can imagine injecting the fragment directly, especially to treat a localized infection involving antibiotic-resistant bacteria."
For treating sepsis, Lieberman suggests inhibiting gasdermin-D-NT is a therapeutic target, and it might be blocked with antibodies or otherwise targeting caspase enzymes.
Sources: AAAS/Eurekalert! via Boston Children's Hospital, Nature