Ju and the rest of the team used the probe to apply mechanical forces to a protein called glycoprotein Iba (GPIba), which human platelets use to receive mechanical signals for transduction into chemical signals. The study, published in the journal eLife, was the “first detailed mechanobiology study” displaying the process of GPIba on blood platelets transforming mechanical forces into chemical signals.
While applying mechanical forces to GPIba, researchers observed a couple of different reactions occur. One is the release of different calcium ions, which “alter adhesion between platelets and other components of the clotting process,” a sign of the conversion of mechanical information into chemical signals.
"These properties generate cooperativity - a synergistic effect that results in the highest signaling quantity and quality at an optimal force where it lasts the longest,” said Professor Yunfeng Chen, PhD.
Like many aspects of human physiology, both excessive clotting and inadequate clotting can cause complications in the body. A bleeding disorder called von Willebrand disease (VWD) occurs when a clotting protein, von Willebrand factor (VWF), is defective or absent completely. Individuals with VWD are prone to frequent nosebleeds, bruising, and hemorrhage after “invasive” situations like surgery, pregnancy, and blunt trauma.
Past studies have attributed VWD to a failure of cells to form a “platelet plug” on the walls of injured blood vessels, but Professor Cheng Zhu, another scientist involved in the project, said their research “reveals another defect.”
The collaborative effort led by Zhu, Ju, Chen, and countless others lays the foundation for future treatments for VWD, either with genetic editing to mend the mutation and/or developing drugs to help GPIba successfully translate mechanical information into chemical information. Additionally, these findings highlight new targets for therapeutic intervention in cases of excessive clotting, a complication that is known to lead to myocardial infarction, stroke, and even death.
Lastly, this research also has the potential to expand to other cellular systems that similarly recruit proteins to translate mechanical forces into chemical information.
Sources: Georgia Institute of Technology, National Hemophilia Foundation, Johns Hopkins Medicine Heart & Vascular Institute
Images: Lining (Arnold) Ju, John Toon, Yunfeng Chen