According to a study published in PLOS Neglected Tropical Diseases, researchers at the Institute Butantan, São Paulo, Brazil, have discovered a flavonoid found in plants to be effective in acting as antivenom compound from the South American pit viper Bothrops jaraca.
The viper is most commonly found northern Argentina, southern Brazil and northeastern Paraguay. It is an abundant species and the large cause of snakebites. Their venom is composed of a mixture of complex proteins that disrupt chemical reactions inside cells.
Being bitten by the snake, can lead to site swelling, blistering, severe hypotension and systemic bleeding from the skin, nose, and gums--eventually leading to shock, intracranial hemorrhage, or renal failure. More than often, the venom of the viper causes proteolytic, coagulant and hemorrhagic effects. Uniquely, these properties are based on a peptide found in their venom which is presently being used for drug development in the treatment of heart failure and hypertension.
The flavonoid identified is called ‘rutin’ which can protect envenomed mice from bleeding and inflammation complications. Current anti-venoms can treat the major issues arising from a snake bite however, it cannot treat common saucer implications of the bite including bleeding.
Existing anti-venoms can treat the major effects of the snake bites however, there are no known therapies for common secondary complications, such as the inability to stop the bleeding.
Results of the research were derived from studies on mouse models injected with both venom and rutin. The mice were than further analyzed for the physiological triggers of venom to better understand the effects rutin on pathophysiological events triggered by the venom. The research findings ‘indicates that rutin has a great potential as an ancillary drug in concert with antivenom therapy to treat snakebites, particularly in countries where antivenom availability is scarce.’
Source: Drug Target Review