FEB 23, 2016 9:08 AM PST

Tiny ponds are big source of greenhouse gases

The smaller the pond, the higher the concentration of carbon dioxide and methane, new research shows.
 
"Our study is the first to include these small ponds in global estimates of CO2 and CH4 emissions, largely because they are difficult to map and were thought to play a small role in carbon cycling," says Meredith Holgerson.

Although ponds less than a quarter of an acre in size make up only 8.6 percent of the surface area of the world’s lakes and ponds, they account for 15.1 percent of carbon dioxide (CO2) emissions and 40.6 percent of diffusive methane (CH4) emissions.

“That makes small ponds an important player in the carbon cycle,” says Meredith Holgerson, a doctoral student at Yale University and the study’s lead author.

“Our study is the first to include these small ponds in global estimates of CO2 and CH4 emissions, largely because they are difficult to map and were thought to play a small role in carbon cycling.”

The reason has to do with the physical makeup of very small ponds and the way they cycle carbon. Small ponds have a high perimeter-to-surface-area ratio, for example, and accumulate a higher load of terrestrial carbon—so-called “leaf litter,” sediment particles and other material.

Small ponds also tend to be shallow, which means their terrestrial carbon loads are highly concentrated compared to larger lakes.

Lastly, gases produced at the bottom of these ponds are able to reach the top more often than what occurs in larger lakes, due to greater water mixing and shallower waters. Because of this, CO2 and CH4 generated in sediments affects the entire pond.

The findings warrant additional research to more accurately estimate the number of tiny ponds around the world, says Holgerson. Such spots don’t typically show up on satellite images, but they can be mapped using aerial images and LiDAR, a remote sensing technology that uses reflected laser light.

The researchers also says their findings suggest that small ponds are likely breaking down terrestrial carbon that is not factored into assessments of the world’s carbon stocks and fluxes.

“The carbon cycling that happens in freshwater systems needs to be accounted for in estimates of terrestrial production,” Holgerson says. “These numbers are important to quantifying the global carbon cycle and making predictions about future stocks and flows of carbon.”

The findings appear in Nature Geoscience.

Source: Yale University

This article was originally published on futurity.org.
About the Author
Master's (MA/MS/Other)
Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
Loading Comments...